uzay hakkında bilgi

İsimli konu WH 'Soru Cevap' kategorisinde, Misafir üyesi tarafından 31 Mart 2011 tarihinde yazılmıştır. Konu Özeti: uzay hakkında bilgi. A. UZAY Bütün sınırlı genişlikleri içine alan sınırsız boşluğa uzay denir. Uzayın büyük bir kısmında hiçbir şey yoktur: Ne gaz, ne sıvı, ne katı; ne de... Basit Bağlantılı Uzay Nedir - Basit Bağlantılı Uzay Hakkında Tiviti hakkında bilgi tiviti bilgi ...

  1. Sponsorlu Bağlantılar
    A. UZAY
    Bütün sınırlı genişlikleri içine alan sınırsız boşluğa uzay denir. Uzayın büyük bir kısmında hiçbir şey yoktur: Ne gaz, ne sıvı, ne katı; ne de herhangi bir atom veya molekül. Uzaya çıktığımızda dünyanın koruyucu atmosferinin dışına çıkmış oluruz. Uzay, yaşamı sürdürmenin çok zor olduğu bir yerdir.


    1. UZAYA İLK ADIM (AY'IN FETHİ)
    1968'de Ay'ın fethine doğru yeni bir aşama gösterildi. 15 Eylülde fırlatılan SSCB uzay aracı Zond-5, ilk Yer-Ay-Yer gidiş gelişini gerçekleştirirken, ABD'nin de Apollo tasarısına başlanmıştır. Temmuz 1969'da Apollo-9 içinde Armstrong, Aldrin ve Collins ile uzaya fırlatıldı. 21 Temmuz'da Türkiye saati ile 04.56'da Neil Armstrong, Ay üstüne ayak basan ilk insan oldu. Onu hemen Edwin Aldrin izledi. Bunlardan sonra Apollo-11, Apollo-12 ve Apollo-13 uçuşları gerçekleştirildi.
    Apollo-13'ün yolculuğu sırasında (Nisan 1970) pilotların büyük bir kaza atlatmalarına karşın, uzay yarışında ABD üstün görünüyordu. Bununla birlikte NASA bir süre için Ay programını durdurdu. SSCB ise 1970 sonunda Ay üstüne ilk otomatik yumuşak iniş gerçekleştirdi. SSCB'in fırlattığı Luna 16-20 Eylül 1970'te Bolluk denizine indi. Luna-17 Ay üstüne bir ay aracı olan Lunakod'u bıraktı. Bu araç 3600 m.lik bir taramadan sonra Ocak 1971'de Luna-17'ye geri döndü.


    2. GÜNEŞ SİSTEMİ VE DİĞER GEZEGENLER
    a) Güneş sistemi
    Güneş sistemi yaşama, 4,6 milyar yıl önce, içinde kayaç ve buz parçacıkları bulunan büyük bir gaz bulutu kütlesi olarak başlamıştır. Bulut kendi çekim gücü nedeniyle sıkıştığında güneş oluşmuş, tanecikler de bir araya gelerek gezegenleri ortaya çıkarmıştır.
    Güneşin iç bölümünde nükleer füzyonla hidrojen helyuma dönüşür ve bu dönüşüm sonucu açığa çıkan enerji, önce ışık yuvarına, oradan da uzaya gider.
    b) Merkür
    Güneşe en yakın gezegen Merkür'dür. Ortalama 57,9 milyon km. olan Merkür-Güneş uzaklığı astronomideki diğer uzaklıklara kıyasla gerçekten çok küçüktür.
    Güneşe çok yakın olduğundan, gündüz vakti M...
    Sponsorlu Bağlantılar
    31 Mart 2011
    #1
  2. biraz eksikti tamamlıyaım dedim
    Uzay

    Uzay, Dünya'nın atmosferi dışında evrenin geri kalan kısmına verilen isimdir. Uzay'ın sınırları asla kesin değildir ve Uzay hep büyür. Atmosfer ile uzay arasında kesin bir sınır bulunmamaktadır, fakat Dünya'nın atmosferi yukarı doğru çıkıldıkça incelmektedir. Uzayda milyonlarca gökada bulunmaktadır. Bu gökadalar içinde milyonlarca güneş sistemleri, gezegenler ve gök taşları bulunmaktadır.
    Uzay çok eski dönemlerden beri insanların büyük ilgisini çekmiş, sonu olup olmadığı; varsa, sınırlarının nereye kadar uzandığı bilginleri ve felsefecileri yakından ilgilendirmiştir. Uzayda yer alan gökcisimlerinin incelenmesi, bunların hareketlerinin diğer gökcisimlerinin davranışlarına yaygınlaştırılması, uzay hakkında çok az da olsa kimi fikirlerin ortaya atılmasını sağladı. Çağlar geçtikçe insanların daha güçlü teleskoplarla uzayı incelemesi uzay hakkındaki bilgileri artırdı. Uçan cisimlerin ortaya çıkmasıyla Dünya'yı çevreleyen yakın uzay hakkındaki bilgiler, daha da artmaya başladı. Nihayet, güçlü füzeler, yapma uydular, Ay'a insanlı ya da insansız araçlar gönderilmesi, Güneş Sistemi içinde yolculuk yapacak yapma uyduların geliştirilmesi, çok güçlü radyoteleskoplarla uzayın derinliklerinin araştırılması, 20. yüzyılın ikinci yarısında insanlığın uzay hakkındaki bilgilerini önemli ölçüde genişletti. Bu arada teorik fizik ve astronomi konusunda devrim yapacak görüşler ortaya atan Einstein gibi bilginlerin uzay konusunda ortaya attıkları pek çok kuram, gözlemcilerin uzay üzerine verdikleri bulguların mantıklı bir şekilde açıklanmasını sağladı. Uzay konusundaki ilk sağlam bilgiler, 19. yüzyıl sonu ile 20. yüzyıl başında, özellikle kuzey ülkelerinde kurulan gözlemevleri sayesinde alındı. ABD'nin Kaliforniya eyaletinde bulunan Palomar Gözlemevi, Dünya'da mevcut gözlemevlerinin en büyüğüdür. Buradaki aynalı teleskopun çapı 5 m., yüksekliği 40 m.dir. Bu gözlemevlerinde uzaydaki gökcisimlerinin kütlesi, hacmi, ışığının şiddeti vb. incelenmektedir. Uygulamalı fiziğin geliştirdiği tayf (spektrum) analizi, uzaydan gelen ışıklardan, cisimlerin hangi elementlerden oluştuğunu göstermektedir. 1932'de K. G. Jansky adındaki bir mühendisin rastlantı sonucu bulduğu uzaydan gelen radyo yayınları, daha sonraki yıllarda radyoteleskopların doğmasına ve uzayın derinliklerinin dinlenmesine, bu radyo yayınlarının kaynaklarının ve nedenlerinin bulunmasına yol açtı. II. Dünya Savaşı sırasında Almanların geliştirdiği V-1 ve V-2 füzeleri daha sonraki yıllarda uzayın keşfi için yapılacak çalışmalarda büyük bir adım oldu. 1947-1956 yılları arasında özellikle ABD, uzay çalışmalarına büyük hız verdi. Yapılan uzay uçuşu denemelerinin hiçbiri bir uzay aracını yörüngeye oturtmayı başaramadı. Bu arada SSCB, 1957 yılında üç kademeli Vostok füzeleri ile "Sputnik" adındaki ilk yapma uyduyu Dünya çevresinde yörüngeye oturtarak uzay yarışında öne geçti. Uydulardan elde edilen uzay üzerine bilgiler, canlıların, özellikle insanların uzayda yaşayabilmeleri için hangi koşulların yerine getirilmesi gerektiğini ortaya koydu. Böylece uzay tıbbı doğdu ve gelişti. Uzayda ilk insan ise 12 Nisan 1961 tarihinde SSCB'nin uzaya gönderdiği Yuri Gagarin oldu. Bu arada, insanların uzay boşluğuna yerleşmelerini sağlamak, uzayı uzaydan izlemek, Dünya üzerinde haberleşme kolaylıkları sağlamak için binlerce uydu yörüngeye yerleştirildi ya da uzayın boşluğuna fırlatıldı. Nihayet 1969 Temmuzu'nda Ay'ın ABD'li astronotlar tarafından fethedilmesi, uzay çalışmalarında en önemi adımlardan biri oldu. Günümüzde uzay yarışı büyük bir hızla sürmektedir.
    [​IMG]

    [​IMG]
    Uzay Boşluğu.

    MİKRO VE MAKRO DA UZAY BOŞLUĞU VAR MIDIR?.
    Bir atom çekirdeğinin, bir futbol topu büyüklüğünde olduğunu varsayarsak, elektronlar bunun çevresinde, çapı 5 kilometre genişlikte bir çember üzerinde dönebilir. Eğer, Güneş Sistemi'nin bütününü düşünürsek orada da benzer bir düzen vardır. Tüm gök cisimlerinin arasındaki boşluğa ise "uzay boşluğu" dendiğini hepimiz biliyoruz.
    Elektronlar yani atom altı parçacıklar arasındaki alana da "boş uzay" denir. Boş uzay olarak adlandırılan bölge ne işe yarıyor ? Olmasaydı ne olurdu diye sorabiliriz? Öncelikle bu boş uzay olmasaydı her şey inanılmaz derecede küçülürdü.
    Örneğin bir insanı meydana getiren atomların, insana asıl ağırlığını veren çekirdeklerini bir araya getirmek mümkün olsaydı, insan, gözle görülemeyecek kadar küçük bir zerre haline gelirdi. Fakat ağırlığı yine o insanın ağırlığına eşit olan bir zerre. Boş uzay da bulunan her parçacık, kendi yasalarına değil, o alanın yasalarına tabiidir. O halde atom, katı bir birim olmayıp aralarında belli uzaklıkların bulunduğu parçacıkları içeren boş uzaydan meydana gelmiştir. Bu parçacıkların şaşılası özelliklerinden biri de ikili özellik göstermeleridir. Yani bazen parçacık, bazen de uzayın derinliklerine uzanan dalgasal yapıya sahiptir. Dalgasal yapıları nedeniyle tüm uzayı doldurmaktadırlar ve bu yüzden aslında boş uzay diye bir şey yoktur. Tüm evren; enerji ve bu enerjinin belirli bölgelerde yoğunlaşmasından oluşmuş maddi sistemlerle doludur. Yok oluş değil yoğunlaşma ve çözülme vardır.
    Madde, küçük ama birbirinden uzak damlalar halinde yoğunlaşmış enerjidir. Madde ve enerji tek bir şeydir ve sürekli olarak birbirine dönüşmektedir. Aynı gerçekliğin iki farklı tezahürünü oluşturmaktadır. Buradan da anlıyoruz ki gerek atomun organizasyonu yani mikro evren diyeceğimiz oluşum gerekse makro evrenimizin organizasyonları arasında benzerlik, paralellik vardır. Bu organizasyon, anlamsızlığa değil, bilimsel ilerlemeler sayesinde, bizim adım adım keşfettiğimiz bir anlama sahiptir. Kuantum kuramını anlamak için atom modelini kavramak çok önemlidir. Mikro kozmosta geçerli olan yasaları kavramak makro kozmosun yasalarını ve işleyiş düzenini kavramamıza da neden olacaktır.
    Ne enteresandır ki yüzlerce yıl önce yaşamış ve çok çeşitli kültürlere damgasını vurmuş mistikler de maddenin yapısı ve özü hakkında bugün yeni fiziğin ortaya koyduğu gerçeklere son derece yakın tanımlamalarda bulunmuşlardır. Bu bir tesadüf olabilir mi? Örneğin, Çin bilgeleri evrenin "Chi" denilen gaz veya eterden oluştuğunu söyler. "Chi",uzayda hareket eden, yoğunlaşınca madde olan hayati enerjidir. Hinduizm'de Brahman, Budizm'de dharmakaya sözcükleri aynı anlama gelir. Bu enerjinin hem ruhsal hem de maddesel özellikte olduğu kabul edilir.
    Yeni fiziğe göre maddeyi oluşturan atom, bizim sert, tek ve bütünmüş gibi algıladığımız kum tanesi gibi katı değildir. Bir kum tanesi milyonlarca atomdan oluşur. Her atom ise yüzlerce mikroskobik parçacığın sürekli devindiği bir küçük evrendir. Nasıl ki Samanyolu galaksisinde sayısız yıldız, gezegen ve çeşitli gök cisimleri varsa, bu cisimlerin birbirine göre hareketi, uzaklığı, etkileşimi, birbiri üzerinde yarattığı çekim kuvvetleri varsa, bir atomun yapısındaki parçacıklar arasında da buna benzer bir yapısal düzenleme ve dinamizm vardır.
    Atom altına, yani maddenin derinliklerine indikçe anlaşılan, "temel yapı taşları" değil, bütün parçacıklar arasında varolan karmaşık ilişkiler dokusudur. Parçacıklar arasında karşılıklı etkileşim ve bütünsel bir davranış vardır. Birinin yarattığı bir etki tümünü ilgilendirir. Atomu bir mikro evren dünyamızı da bir makro evren olarak kabul edersek aslında mikroda geçerli olan yasalar makro da da geçerlidir.
    Örneğin ailemizdeki bireylerden birinin yaşadığı, iyi veya kötü olarak nitelendirdiğimiz bir olaydan hepimiz şöyle ya da böyle bir şekilde etkilenmiyor muyuz? Bunu daha da genişletirsek şehrimizdeki, ülkemizdeki, dünyamızdaki çeşitli olaylar ve haletlerden de benzer şekilde etkilenmiyor muyuz? İşte bu atom altında geçerli olan bir yasanın yani etkileşim ve bütünsel davranışın günlük hayatımızda da geçerli olmasıdır
    UZAYIN YAPISI

    Big bang ya da Büyük patlama, evrenin yaklaşık 14 milyar yıl önce çok yoğun ve sıcak bir noktadan meydana geldiğini savunan bilimsel teori. Galaksiler nebulözler ve yıldızlararası plazmanın bu şekilde meydana geldiğini savunur. Bu ilk infilaktan bu yana çok daha küçük patlamalar halen devam etmekte (süpernovalar) ve evren, genişleyip büyümeye devam etmektedir.

    Gerçekten de dünyamızdaki gözlem evlerinden izlenen uzak galaksilerin ışığındaki kırmızıya kayış, bunun ispatı olarak kabul edilmektedir.

    Büyük patlamadan gelen radyasyon, ilk defa 1964′te tespit edilmiştir. New Jersey’deki Bell Laboratuvarlarından Arno Penzias ve Robert Wilson, Samanyolunun dış kısımlarından gelen belirsiz radyo dalgalarını ölçmeye çalışıyorlardı. Fakat bunun yerine gökyüzünün her tarafından gelen bir radyasyon buldular. Bu ışınımın bütün yönlerdeki parlaklığı aynı idi ve yaklaşık 3° Kelvin sıcaklığında bir ortamdan geldiği anlaşılıyordu. Daha sonra Penzias ve Wilson, bu buluşları için bir Nobel ödülü kazandılar.

    [​IMG]
    Bigbang teorisine ilişkin şekil

    Bu kozmik fon radyasyonunun, büyük patlamadan hemen sonra kainatı dolduran sıcak gazdan geldiği tahmin edilmektedir. Astronomlar, 1920′lerden beri kainatın genişlediğini biliyorlardı. Bu genişlemenin hızı da, 15 milyar yıl kadar önce bütün maddenin tek bir anda aynı noktada bulunması gerektiğini gösteriyor. İşte tam bu ilk zamana büyük patlama deniyor. O zamandan beri de kainat sürekli olarak genişlemektedir.

    Büyük patlamadan sonra kainat radyasyondan yayılan çok sıcak gazla dolmuştur. İlk önce gaz, temel parçacıklardan meydana gelmişti: Önce kuarklar oluştu ve bunlar bir araya gelerek protonları ve nötronları meydana getirdi; daha sonra da elektronlar ortaya çıktı. Büyük patlamadan 300.000 yıl sonra, sıcaklık 3000 °K’ye düşünce bu parçacıklar birleştiler ve atomlar oluştu.

    Bu durum, kainata büyük bir değişiklik getirdi. O zamana kadar elektrik yüklü parçacıklar radyasyonu çok kolay emerlerdi. Radyasyon çok uzağa gidemediğinden, gaz da şeffaf değildi. Fakat nötr atomlar radyasyonu iyi ememediler. Bu durumda hareketine bir engel kalmadığından, radyasyon uzayda yayıldı.

    Uzay genişledikçe radyasyonun dalga boyu uzadığı için, daha soğuk bir cisimden geliyormuş kanaatini vermeye başladı. Bizim radyasyonu ölçebildiğimiz şimdiki zamana kadar radyasyon, mutlak sıfırın ancak birkaç derece üstündeki sıcaklıklara kadar soğudu.
    [​IMG]
    Kozmik mikrodalga fon radyasyonu

    Penzias ve Wilson tarafından bulunan kozmik fon radyasyonu, bu düşünceye mükemmel olarak uymaktadır. Hem sıcaklık doğru derecedeydi hem de radyasyon bütün gökyüzünde aynı sıcaklıktaydı; çünkü bütün yönler büyük patlamaya doğru gidiyordu.
    Fakat bu keşif ortaya çözülmesi gereken bir de bilmece çıkardı. Fon radyasyonu, büyük patlamadan 300.000 yıl sonra gazın son derece homojen olduğunu göstermektedir. Gazın içinde büyük topaklar ve delikler olsaydı, bunlar radyasyonun gökyüzündeki dağılımında sıcak ve soğuk bölgeler olarak gözükecekti. Öte yandan bugün çok topaklıdır. Kümeler, ince uzun gruplar halinde toplanan galaksiler ve bunların aralarında boşluklar vardı. Bu büyük yapıların orijinal gazın içindeki topaklardan çıkmış olması gerekmektedir. Tıpkı sütün topaklanarak peynire dönüşmesi gibi.

    Kozmoloji ile uğraşan bilim adamları, fon radyasyonu iyi incelenirse, bunun sıcaklığında bazı sapmalar bulacaklarına inanıyorlar. Astronomlar, kozmik fon radyasyonunun sıcaklığını 1960′lardan beri giderek artan bir dikkatle ölçmektedirler. Birkaç yanılmanın dışında, yalnızca ortalama sıcaklıktan sapmalara sınırlamalar koyabilmişlerdir. Yerden yapılan son deneyler, bunların da bir Kelvin’in 30 milyonda birinden fazla olamayacağını gösteriyor. Yerden gözlem yapan astronomlar, kozmik fon radyasyonunu incelediklerinde iki hususla karşılaşmaktadır: Birkaç santimetre daha uzun dalga boylarında gözlem yaptıkları zaman bizim galaksimiz Samanyolu’ndan gelen radyasyon, zayıf fon radyasyonundan baskın çıkıyor. Bizimi galaksimizdeki parlak ve karanlık kısımlar, fon radyasyonundaki herhangi bir sapmayı kolaylıkla maskeliyorlar.

    Daha kısa dalgaboylarında ise Samanyolu daha zayıftır; fakat bu dalga boylarındaki radyasyon, Dünyanın atmosferindeki su buharı tarafından emilmektedir. Dünyanın her yerinde, çeşitli gruplar, yüksek dağlar, Antarktika ve yüksekte uçan balonlar gibi havanın kuru olduğu yerlerden gözlem yaparak bu problemi çözmeye çalışmışlardır.

    Buna en iyi çözüm, bir uydudaki kısa dalga boylu bir radyo alıcısıdır. 1970′lerin ortalarında, bu gözlemcilerin çoğu, NASA’nın Goddard Uzay Uçuş Merkezindeki bilim adamlarıyla işbirliği yaparak Kozmik Fon Keşif Uydusu COBE’nin tasarımına katkıda bulundular.
    UZAY
    Bütün sınırlı genişlikleri içine alan sınırsız boşluğa uzay denir. Uzayın büyük bir kısmında hiçbir şey yoktur: Ne gaz, ne sıvı, ne katı; ne de herhangi bir atom veya molekül. Uzaya çıktığımızda dünyanın koruyucu atmosferinin dışına çıkmış oluruz. Uzay, yaşamı sürdürmenin çok zor olduğu bir yerdir.

    1. UZAYA İLK ADIM (AY’IN FETHİ)
    1968’de Ay’ın fethine doğru yeni bir aşama gösterildi. 15 Eylülde fırlatılan SSCB uzay aracı Zond-5, ilk Yer-Ay-Yer gidiş gelişini gerçekleştirirken, ABD’nin de Apollo tasarısına başlanmıştır. Temmuz 1969’da Apollo-9 içinde Armstrong, Aldrin ve Collins ile uzaya fırlatıldı. 21 Temmuz’da Türkiye saati ile 04.56’da Neil Armstrong, Ay üstüne ayak basan ilk insan oldu. Onu hemen Edwin Aldrin izledi. Bunlardan sonra Apollo-11, Apollo-12 ve Apollo-13 uçuşları gerçekleştirildi.
    Apollo-13’ün yolculuğu sırasında (Nisan 1970) pilotların büyük bir kaza atlatmalarına karşın, uzay yarışında ABD üstün görünüyordu. Bununla birlikte NASA bir süre için Ay programını durdurdu. SSCB ise 1970 sonunda Ay üstüne ilk otomatik yumuşak iniş gerçekleştirdi. SSCB’in fırlattığı Luna 16-20 Eylül 1970’te Bolluk denizine indi. Luna-17 Ay üstüne bir ay aracı olan Lunakod’u bıraktı. Bu araç 3600 m.lik bir taramadan sonra Ocak 1971’de Luna-17’ye geri döndü.
    2. GÜNEŞ SİSTEMİ VE DİĞER GEZEGENLER
    a) Güneş sistemi
    Güneş sistemi yaşama, 4,6 milyar yıl önce, içinde kayaç ve buz parçacıkları bulunan büyük bir gaz bulutu kütlesi olarak başlamıştır. Bulut kendi çekim gücü nedeniyle sıkıştığında güneş oluşmuş, tanecikler de bir araya gelerek gezegenleri ortaya çıkarmıştır.
    Güneşin iç bölümünde nükleer füzyonla hidrojen helyuma dönüşür ve bu dönüşüm sonucu açığa çıkan enerji, önce ışık yuvarına, oradan da uzaya gider.
    b) Merkür
    Güneşe en yakın gezegen Merkür’dür. Ortalama 57,9 milyon km. olan Merkür-Güneş uzaklığı astronomideki diğer uzaklıklara kıyasla gerçekten çok küçüktür.
    Güneşe çok yakın olduğundan, gündüz vakti Merkür’deki sıcaklık 423 C ye kadar çıkar. Ama güneş battığı zaman sıcaklığın –183 C ye kadar indiği olur. Güneşe bu kadar yakın olmasına karşın bazı uzmanlar Merkürde hala kraterlerin güneş görmeyen yerlerinde buz bulunabileceğini düşünüyorlar.
    Bir teoriye göre Merkür, bundan milyonlarca yıl önce 2 kez hemen hemen kendisi kadar büyük gök cisimleriyle çarpıştı. İlk çarpışma sonucunda Merkür neredeyse tümüyle sıvılaştı, ağır metaller dibe batarak büyük çekirdeği oluşturdu. İkinci çarpışma sonucunda da kabuğun büy
    ük bir kısmı parçalanarak ince bir kabuk kaldı.
    c) Venüs
    Güneşe en yakın ikinci gezegendir. Güneşe uzaklığı 108 milyon km.dir. Dünyaya en yakın konuma geldiğinde güneş ve aydan sonra en parlak cisimdir. Işığı bazen gölgeler oluşturabilir.
    Venüs’ün atmosferi çok yoğundur. Öylesine yoğundur ki; dünyadaki en güçlü teleskopla bile yeryüzü şekillerinin görülmesi imkansızdır. Atmosferinin basıncı yüzünden ezileceğinden, gökyüzünden yağan sülfürik asitten yanacağından, atmosferi nefes almaya uygun olmadığından büyük bir olasılıkla hiçbir insan Venüs’ün yüzeyine ayak basamayacaktır.
    Venüs çok yavaş döner. Kendi çevresinde dönmesi 243 gün sürerken, güneş çevresinde dönmesi 224 gün sürer. Bu nedenle bir Venüs günü bir Venüs yılından daha büyüktür.

    d) Yer
    Dünya, güneş sisteminde yaşam olan tek gezegendir. Güneşe uzaklığı ortalama 149,6 milyon km.dir. Dünya, demir ve nikel bir çekirdeği saran kayaç tabakasından oluşur. Derinlere indikçe sıcaklık artar.
    Yaklaşık 4,6 milyar yıl önce, bir gaz ve toz bulutu yoğunlaşarak güneşi oluşturmuştur. Bulutun içindeki başka maddeler birleşerek dünya ve diğer gezegenleri oluşturmuştur. Dünyada demir ve nikel eriyerek çekirdeği oluşturmuştur. 4 milyar yıl önce dünyanın kabuğu oluşup yanardağlardan çıkan su buharı yoğunlaşarak denizleri meydana getirmiştir.

    e) Mars
    Dünyanın yarısı büyüklüğünde olan Mars birçok yönden dünyaya benzer. Mars gününden sadece bir saat uzundur. Marsta da dünyadaki gibi mevsimler vardır. Ama güneşe uzaklığı 227,4 milyon km. olduğu için ortalama sıcaklığı –28C dir. Ayrıca bir Mars yılı 687 dünya günü sürer.
    Marstaki nehir yatakları Mars’ın ikliminin bir zamanlar daha sıcak, atmosfer basıncının da suyun yüzeye çıkmasını sağlayacak kadar yüksek olduğunu gösteriyor. Belki de bilinmeyen bir olay Mars’ın atmosferinin uzaya kaçmasına ve demirce zengin olan toprağının pas rengi almasına neden oldu
    Uzay yolculuklarının ateşli taraftarları 2030 yılı civarında insanoğlunun Mars’a ayak basacağını umuyorlar. Daha sonra Mars’ta üsler kurulacak, bu üsler büyüyüp gelişecek ve en sonunda uzayın daha uzak bölgelerine yapılacak yolculuklar için fırlatma rampası olarak kullanılacaktır.

    f) Jüpiter
    Güneş sistemindeki en büyük gezegen Jüpiter’dir. 16 uydudan oluşan ailesi ile minik bir güneş sistemine benzer. Çok küçük olan katı çekirdeği dışında minyatür bir güneş gibi hemen hemen tümüyle gazdan oluştuğu için Jüpiter diğer gezegenlerden farklı gözükür.
    3 Aralık 1973 tarihinde, Jüpiter’e ulaşan Pioneer-10, dünyaya Jüpiter’in bulutlarına ait ilginç fotoğraflar gönderdi. 1979 yılında Voyager araçları Jüpiter’in dünyadan görülemeyecek kadar ince 3 tane halkası olduğunu buldular.
    Jüpiter’deki kırmızı leke ilk kez İngiliz astronom Robert Hooke tarafından 1664 yılında gözlenmiştir. Aşağıdan yukarıya doğru hızla yükselen maddenin yarattığı 8 km. yüksekliğinde, 40.000 km. uzunluğunda ve 14.000 km. genişliğinde olan bir fırtınadır. Saatte 500 km. hızla esen bu fırtına önüne çıkan küçük fırtınaları yutarak büyür.
    g) Satürn
    Güneş sistemindeki ikinci gezegen olan Satürn, güneşe uzaklık sıralamasında 6. dır. Jüpiter gibi Satürn’de neredeyse tümüyle gazdan oluşur. Kendi çapının beş katı çapa sahip olan çok güzel görünüşlü halkaları oldu için Satürn’e “Halkalı Gezegen” de denir.
    Satürn’ün yoğunluğu o kadar azdır ki büyük bir göle konsa batmayacak kadar hafiftir.
    Satürn’ün halkaları aletleri oldukça ilkel olan eski astronomların aklını karıştırmıştı. Galileo 1610 yılında ilk kez teleskopla Satürn’e baktığında, sanki üçlü bir gezegen sistemiymiş gibi, her iki yanında birer uydu gördüğünü sanarak şaşırmıştı. İki yıl sonraysa uydular görünmez olmuştu.
    Satürn’ün en büyük uydusu Titan’dır. Merkür’den daha büyük olan bu uydunun yoğun ve kalın bir atmosferi vardır. Bir uydudan çok küçük bir gezegene benzer. 21.yy.ın başlarında Amerikan Cassini uzay sondasından ayrılacak olan Avrupa yapımı bir sondanın, uydunun atmosferine sokulması planlanıyor.
    h) Uranüs
    Uranüs, 1781 yılında İngiliz astronom William Herschel tarafından bulundu. Daha önce iki kez gözetlenmiş ama yeni bir gezegen olduğu anlaşılamamıştı. Uranüs’ün güneşten ortalama uzaklığı 2 milyar 869 milyon km.dir. Uranüs, güneş çevresindeki bir dönüşünü 84 yıldan biraz daha uzun bir zamanda tamamlar.
    Uranüs güneş çevresindeki yörüngesinde yan yatmış olarak döner, tıpkı yuvarlanan bir varil gibi. Bu nedenle de zaman zaman her iki kutbu da bize doğru döner. Bu garip dönüşe, milyarlarca yıl önce dev bir gök taşının gezegene çarpması neden olmuş olabilir.
    Uranüs’ün halkaları 1977 yılında, astronomlar gezegenin arkasından bir yıldızı gözledikleri sırada bulundu. Yıldızın ışığı beklenenden 5 dk. önce sönükleşince yıldızın ışığını engelleyenin bir uydu olabileceği düşünüldü. Aynı şey gezegenin öbür yanında da tekrarlanınca bunun bir halka sistemi sonucu olduğu anlaşıldı.

    i) Neptün

    j) Plüton

    k) Onuncu gezegen

    3. KUYRUKLU YILDIZLAR, METEORLAR VE ASTEROİTLER
    a) Kuyruklu Yıldızlar
    Kuyruklu yıldızlar, Güneş sisteminin oluşum döneminden arta kalmış kayaç ve buz kütleleridir. Gök bilimciler, bu buzlu kayaçların, Hollanda’lı gökbilimci Jan Oort’un adıyla anılan ve Güneş Sisteminin en dışındaki Oort bulutu bölgesinde yer aldığını düşünmektedirler.
    b) Meteorlar
    Gökte kısa bir an için görülen ışık çizgilerinin nedeni meteorlardır. Kuyruklu yıldızlardan kalan kayaç ya da toz parçacıklarının saniyede 70 km. yi bulan hızlarla atmosfere girip yanmaları sonucu oluşurlar. Kuyruklu yıldızlar, yörüngelerinde dönerken kopan parçacıkların atmosfere girip yanmasıyla gökte “meteor yağmuru” denilen görüntü-yü yaratırlar.
    c
    ) Asteroitler:
    Asteroitler, güneş çevresindeki yörüngelerde dönen ve gezegenlerden daha küçük olan gökcisimleridir. Günümüze kadar keşfedilenlerin sayısı 4000’i geçmektedir. Boyları küçük taş parçaları ile yüzlerce km. çaplı kütleler arasında değişir. Asteroitlerin çoğu Mars ile Jüpiter arasında uzanan Asteroit kuşaklarında yer alır. Ancak “Truvalılar” adı verilen, iki grup halinde Jüpiter’in yörüngesini izlerler. Öbürleri güneşin çevresinde dönerler.
    En büyük Asteroit 1801 yılında keşfedilen Ceres’tir. 930 km.lik çapıyla dünyaya getirilirse Fransa yüzölçümü kadar bir yer kaplardı.
    4. YILDIZLAR

    5
    . EVRENİN ÖYKÜSÜ
    Evren, atomlardan galaksilere kadar var olan her şeydir. Astronomlar evreni incelemeye başladıklarından beri onun nasıl ortaya çıktığını merak ettiler. Çevremizdeki galaksilerin bizden uzaklaştığını ve evrenin genişlediğini buldular. Eğer bu doğruysa evren geçmişte, günümüzden çok daha küçüktü. Buna dayanarak “Büyük Patlama” (big-bang) teorisini geliştirdiler. Bu teori her ne kadar tüm sorulara cevap vermese de astronomların yaptıkları gözlemlerle büyük bir uyum içindedir.
    Büyük patlama teorisine göre evren, bundan 15 milyar yıl önce çok büyük, hayal bile edilemeyecek kadar şiddetli bir patlama ile ortaya çıktı. Büyük patlamadan önce neyin varolduğunu soramazsınız, çünkü her şey büyük patlamadan sonra ortaya çıktı. Büyük patlamadan önce nelerin olup bittiğini de soramazsınız, çünkü zamanın kendisi de büyük patlamayla başladı.

    B. UZAY ÇALIŞMALARI
    1. UZAY YARIŞI (SOĞUK SAVAŞ)
    2. Dünya Savaşı’ndan sonra SSCB ve ABD uzay çalışmalarına hız verdiler. Silahlanma çerçevesinde yapılan bu soğuk savaş teknolojinin gelişmesine imkan sağladı. SSCB 4 Ekim 1957’de Sputnik-1 adlı yapay uyduyu, daha sonra da 3 Kasım 1957’de Layka adlı köpeği taşıyan Sputnik-2’yi uzaya gönderdi. Sputnik’leri ABD uydusu Explorer-1 izledi (1 Şubat 1958). 12 Nisan 1961’de SSCB, içinde insan bulunan ilk uyduyu yörüngeye oturtarak yeni bir aşama yaptı. Yuri Gagarin’i taşıyan Vostok-1 yörüngeye oturtuldu. Bunu Şubat 1962’de içinde ilk ABD’li astronotlardan John Glenn’in bulunduğu Friendship ile ABD izledi. Sonra da Lovell ve Borman 14 gün süreyle yörüngede kaldılar(4-18 Aralık 1965). Aleksey Leonov, 18 Mart 1965’de uzayda araç dışına ilk çıkışı gerçekleştirdi, bunu 3 Haziran 1965’de Edward White izledi. Mariner-4 (ABD) Kasım 1964’de Mars gezegeninin ilk fotoğraflarını iletti. Buna karşılık Lunik-9 (SSCB) ay üzerine ilk yumuşak inişi Şubat 1966’da gerçekleştirdi. Bunu aynı yılın Haziran ayında ABD’nin Surveyor’ı izledi.
    2. UZAY ARAÇLARI

    a) Füze motoru

    b) Fırlatıcılar

    3. ASTRONOTLAR
    Astronotlar, uzaya çıkabilmek için aylar süren eğitimden geçerler. Uzayda yön bulmak bu eğitimlerin en önemlilerindendir. Uzay araçlarının içinde astronotların yerine yön bulmasını sağlayan çok gelişmiş bilgisayarlar vardır. Bu bilgisayarlar hasar gördüğü zaman astronotların aracı kullanması gerekebilir.
    Uzayda yapılacak tüm çalışmalar daha önce yerde bir simülatörde denenir. Burada telsiz kullanmayı, yer kontrol merkeziyle haberleşmeyi ve gerekirse arızaları nasıl giderileceği öğrenilir. Bu simülatörlerde ayrıca yangın, güç kesilmesi, paraşüt arızası, yörüngeden sapma halinde küçük roket motorlarını kullanma öğrenilir.
    Uzaydaki yer çekimsiz ortama alışmak astronotlar için zor olur. Görev sırasında uzayda yürümek gerekebile-ceğinden, su altında bazı çalışmalar yapılır. Çünkü su altında hareket etmek yer çekimsiz ortamda hareket etmeye çok benzer.
    Kalkış sırasında astronotlar, kendilerini dünyadakinden 3 kat daha fazla ağır hissederler. Bu çekime yer çekimin 3 katı anlamında kısaca 3g denir. Astronotların bu çekime alışabilmeleri için merkezkaç aracı denen bir araca binerler. Bu araç astronotların kendilerini dünyadakinden 3 kat daha fazla ağır hissetmelerini sağlar. Astronotlar yola çıkmadan önce 2 hafta süresince karantinaya alınırlar. Çünkü uzayda hastalanırlarsa en yakın hastaneye gitmek için 900km. yol gitmeleri gerekir.
    Genelde bir ekipte 3 kişi bulunur. Ekipte bir pilot, uzay aracının içine verilen havadan sorumlu bir kişi ve bilgisayarları kullanan bir uzman bulunur. Güvenlik nedeniyle, herkes tüm görevleri yapabilecek şekilde eğitilir.
    4. ASTRONOMİ
    Astronomi tüm bilimlerin en eskisidir. Dünyada ilk insanın ortaya çıktığı günden bu yana insanlar gökyüzünü ve orada gördüklerini merak ettiler. Gördükleri şeylerin resimlerini mağara duvarlarına çizdikleri için mağara adamlarının gökyüzünü gözlediklerini biliyoruz. Ürün ekme ve hasat için en uygun zamanın güneş, ay ve yıldızların hareketleri incelenerek bulunabildiğini gördüklerinden beri insanlar gökyüzünü gözlemlemenin yararlı olduğunu anladılar.
    Her ne kadar eski Mısırlıların festival ve bayram günlerini belirlemek için güneş ay ve yıldızları kullandıkları biliniyorsa da gökyüzünü incelemeyi bir bilime dönüştürenler eski Yunanlılardır. Örneğin eski Yunanlı Hipparkhos, çok doğru yıldız haritaları çizmişti.
    Her ne kadar astronomlar evrenin doğası ve yapısı konusunda oldukça çok bilgi biriktirmişlerse de, her şeyin ayrıntıları ile birlikte anlaşılması için teleskopun icadını beklemek gerekti. 1608 yılında Hans Lippershey iki merceğin art arta yerleştirilmesinin uzaktaki cisimleri büyütebildiğini gördü. Mercekleri daha rahat kullanmak için onları uzun bir borunun ucuna monte eden Lippershey ilk teleskopu yapmış oldu. Lippershey’in icadı dünyada çabucak yayıldı. Galileo daha gelişmiş bir teleskop yaparak gökyüzünü incelemeye başladı. Galileo gördüklerine çok şaşırdı. Ayda dağlar ve kraterler vardı. Güneşte, oynayan küçük lekeler vardı. Jüpiter’in bir sürü küçük uyduları vardı ve Venüs’ün görünüşü zaman geçtikçe değişiyordu. En son keşif hepsinin en önemlisiydi. Çünkü bu Venüs’ün dünya çevresinde değil de güneşin çevresinde döndüğünü ispatlıyordu.

    5. İNSANLARIN VE DİĞER CANLILARIN UZAYDAKİ TEPKİLERİ
    Uzayda olmak insanları ve diğer canlıları etkiler. Örneğin, uzaydayken insanların boyu birkaç cm. uzar. Bunun nedeni ise, dünyadayken yerçekiminin omurgalar arasındaki kıkırdakları sıkıştırmasıdır. Ağırlıksız ortamda bu kıkırdaklar genişleyerek boy uzar.
    İnsanlardaki bir başka değişim ise kanın beyne fazla miktarda pompalanmasıdır. Dünyada kalp, beynin aşağısında olduğundan kalbin beyne kan pompalaması için daha fazla uğraşması gerekir. Ağırlıksız ortamda böyle bir durum söz konusu olmadığı için kalp beyne dünyadaki gibi kan pompalamaya devam eder. Fakat yer çekimi olmadığı için beyne daha fazla kan gider. Bu da dünyada baş aşağı birkaç saat durmaya benzer.
    İnsanlar ağırlıksızlığa çabuk alışırlar. Öteki canlılar ise farklı farklı tepkiler gösterirler: kurbağalar uzayda sıçramaya çalıştıklarında takla atarlar ve neye uğradıklarını şaşırırlar. Uzayda sebze ve meyvelerin nasıl yetiştirilebi-leceğini bilmiyoruz. Astronotlar bu konuda çeşitli deneyler yapıyorlar, ama şimdilik vitamin ihtiyaçlarını yanlarında götürdükleri hazır yiyeceklerden karşılamak zorundalar.
    Arabella adı verilen bir örümcek uzayda ağ örmeyi başardı; ama yine de alışılmış bir ağ örene kadar birkaç gün geçti.
    Uzayda yumurtadan çıkan bazı kuşlar düzgün uçmayı hiçbir zaman başaramadılar. Dünyada, kuşlar kanatlarını çırptıkları zaman yukarıya doğru bir kuvvet üretirler bu kuvvet onları havada tutar. Ağırlıksız kuşlar ise, kanat çırptıklarında havada daireler çizecek biçimde dönüp dururlar.
    Bitkiler ilginç bir biçimde büyürler, yeşil kısımlar uzay aracındaki herhangi bir ışığa yönelir, ama kökler ne tarafa yöneleceklerini bilemezler
    Uzay çalışmalarının tarihi gelişimi
    Uzay çalışmaları Yer atmosferinin dışından insanlı ve insansız uzay araçlarıyla yürütülen araştırmalardır. Daha çok gelişmiş ülkelerin yürüttüğü uzay araştırmalarının genel amacı; temel bilimlerin ve teknolojinin de itici gücü ile uzayda doğal olayların ölçülmesi, bilinmeyenin araştırılması, bilginin genişletilmesi. Yer dışında insanlığa yararlı olabilecek kaynakların bulunmasıdır. Genel itici güçler arasında ulusal itibar, ulusal güvenlik, bilimsel merak sayılabilir, özel amaçlar ise yer altı ve yer üstü kaynaklarının bulunup incelenmesi, denizlerden yararlanma, meteoroloji (hava tahminleri), iletişim (haberleşme) ve enerji gibi sorunlara yer atmosferi dışından yanıt aramaktır.



    [​IMG]

    Uçma ve uzaya çıkma fikri çok eskidir, iranlıların, Hintlilerin ve Çinlilerin efsaneleri uçan adamlarla doludur. Atmosfer varlığının kanatlı uçuşlar için gerekli olduğu, atmosfer olmazsa kanatlı uçmanın mümkün olmadığı çok sonra ancak 16. yüzyılda öğrenilmiştir, örneğin; Ay’a kadar kanat takıp uçmak öncelikle arada atmosfer olmasını gerektirir. Halbuki yer atmosferinin kalınlığı Ay uzaklığının ancak on binde birini kapsar. 17. yüzyılda Ay’a yolculuk üzerine bilim kurgu hikâyeleri yazılmaya başlanmıştır. Bunlardan bazıları roket kullanımını da öngürüyordu. Çünkü o zamanlar roket denebilecek âletler savaşlarda kullanılıyordu, ilk roket muhtemelen 13. yüzyıl başlarında Çinliler tarafından keşfedilmiştir. 1232 de Çinlilerin bir savaşta yakıtı barut olan roketler kullandığı bilinmektedir. Barut yakıtlı ilk roketlerin yapımı Avrupada da öğrenildikten sonra roketlerin askerî amaçlarla savaşlarda kullanımı yaygınlaşmıştır. Bu arada zamanla barut yakıtlı roketlerin güçleri menzilleri, ağırlıkları ve hedefe ulaşımda güvenilirlikleri oldukça geliştirildi, ikinci Dünya Harbi’ne kadar roketler sadece patlayıcı maddeleri uzak hedeflere fırlatma amacıyla kullanıldı. Ancak bu arada, roketlerin başka amaçlarla da örneğin, uzay uçuşlarında kullanılabileceği öğrenilmişti. 19. ve 20. yüzyıllarda gerçekleşen teknolojik ilerlemeler sonunda, bir çok kimse roketlerle Ay’a gidilebileceğine inanmaya başlamıştır. Rusyada N.I.Kibalchich (1853- 1881) insan taşıyan roketlerin yapılabileceğini savunmuş ve 1890′da Alman H. Gansvvindt (1856- 1934) bu düşünceyi daha da geliştirerek roketlerle yönlendirilebilen insanlı uzay araçlarının yapılabileceğini göstermeye çalışmıştır. 1898 de Rus K.Tsiolkovsky (1857- 1935) roket operasyonunun matematiksel formülleri üzerine ilk çalışmasını tamamlamış, roketlerde katı yakıt yerine sıvı yakıt kullanımının gerekliliği üzerinde durmuştur. Sıvı yakıtla daha fazla güç elde edildiğini ve bu gücün daha kolay kontrol edilebildiğini göstermiştir. Tsioikovsky daha sonraki çalışmalarıyla çok kademeli roket kavramını geliştirmiştir. Ancak Tsioikovsky kuramcı olduğu için düşüncelerini deneme evresine sokamamıştır. Tsiolkovsky’nin sıvı yakıtlı roket önerisini ilk kez Amerikalı bilim adamı R.H.Goddard (1882- 1945) 1926′da uygulamaya sokmuştur. Diğer taraftan Almanyada H.Oberth 191/’de sıvı yakıtlı asker? amaçlı roket yapımının projelerini doktora tezi olarak tamamlamış, ancak tez uygun bulunmayarak 1922′de geri çevrilmiştir. Daha sonra Oberth’in, roketleri temel alan uzay uçuşları üzerine yazdığı bilimsel kitaplar hâlâ önemini yitirmemiştir. Oberth’in çalışmalarından esinlenerek Avrupa’da ilk sıvı yakıtlı roket denemesini 1931 de Alman J.VVinkler (1897-1947) yapmıştır. 1927′de kurulan Alman Uzay Uçuşları Derneği de sıvı yakıtlı roket denemelerine başlamıştır. Bu denemeleri yapanlardan biri de o zaman çok genç olan W. Von Braun (1912- 1977) dur. Almanya’da roket çalışmaları 1932′de ordu tarafından ele alınmış, 1937 ‘de bir deneme istasyonu kurulmuş ve sonra bu istasyonda V- 2 roketleri geliştirilmiştir. Bir tonluk savaş başlığı taşıyan bu sıvı yakıtlı roketler, bugünkülerin öncüsü olarak savaşların gidişini değiştirdi ve Dünya’nın uzay çağına girişinde önemli bir rol oynadılar.

    İkinci Dünya Savaşı sonunda Alman roket uzmanları, başta Von Braun olmak üzere Amerikan ordusuna teslim olup çalışmalarına Amerika’da devam ettiler. Savaştan hemen sonra Amerikan hava kuvvetleri; Atlas, Titan ve Thor gibi güçlü roketler geliştirirken Rus roket uzmanları (Örneğin; F.Tsander, S.Korolev, V.Glushko ve M.Tikhonravov) Tsiolkovsiky’nin bulgularını izleyerek kısa zamanda Atlantik’i bile geçebilecek güçte roketler geliştirdiler. 1950′de uluslararası Astronotik Federasyonu kurulmuş, yıllık toplantılarında uzay uçuşu problemleri tartışılmış, uzay uçuşu için gerekli teknolojiye ulaşıldığında önce aletli ardından insanlı uzay araçlarının Dünya yörüngesine sokulması düşünülmüş, sonraki hedefler; Ay, Venüs, Mars ve diğer yakın gezegenler olarak belirlenmiştir. Uygulamalar zengin ülkeler tarafından yapılabilmiş, 1955′lerde Rusya’da ve Amerika’da uzay uçuş programları plânlanarak uygulama aşamasına girilmiştir. Ruslar ilk kıtalararası roketi 1957 Ağustos’unda fırlattılar. Rusya’da bu güçlü roketler aynı yılın 4 Ekim günü ilk yapay uydu Sputnik 1′i Dünya yörüngesine oturtmak için kullanıldı. Böylece çok kademeli roketler uzay uçuşlarında uygulamaya sokulmuş ve uzay çağı başlamıştır. Sovyetler güçlü çok kademeli roketlerine sürekli yeni kademeler ekleyerek, Vostok ve Soyuz gibi insanlı ve insansız uzay araçlarının fırlatılmasında yararlanmışlardır. Sovyetler hemen birincinin ardından 3 Kasım 1957′de Sputnik 2 yi içinde Laika adlı bir köpekle birlikte Yer yörüngesine oturturken ABD, aynı yıl Vanguard uzay aracının fırlatılmasında başarısız olmuş ve sonra 31 Ocak 1958′de ilk başarılı uzay aracını (Explorer 1) fırlatmıştır.


    [​IMG]
    Amerika’da Redstone ve Uno roketlerinden sonra Von Braun ekibi, insanlı uzay uçuşları için çok kademeli Satürn roketini geliştirdiler. Apollo projesi için geliştirilen o zaman Dünya’nın en güçlü roketi Satürn V ilk kez 1967 de uygulamaya sokuldu. Sovyetler Satürn V in yarı gücünde Proton roketini geliştirmişlerdi. Proton roketi insanlı Ay yolculukları için geliştirilmiştir. 1968′de Apollo projesiyle ilk insanlı Ay yolculuğundan sonra Ruslar insanlı Ay projesini iptal edip Proton roketini insansız uzay uçuşları için kulanmışlardır Daha sonra Ruslar, Satürn V ten çok daha güçlü dev bir roket, yaptılar. Bu roket Ay yolculuklarında ve dev bir uzay istasyonunun Dünya yörüngesine oturtulması için kullanıldı. Bu roket, 10 tonluk kütleyi Dünya yörüngesine oturtacak, 60 tonluk kütleyi Ay’a gönderebilecek güçtedir. Raporlara göre üç kademeli olan bu dev roket, 1968-1972 yıllarında kaza geçirdiği için Ruslar daha sonra Energia adlı daha güçlü yeni bir roket sistemi geliştirmişlerdir:

    Roketlerdeki itici gücün kaynağı roket motorlarında oluşturulan sıcak gazın hızla dışarı atılmasından doğan tepkidir. Nevvton’un üçüncü yasasına göre her etkiye zıt yönlü bir tepki kuvveti oluşur. Roketlerde roket motorlarından hızla püskürülen gaz, rokete zıt yönlü bir hareket sağlar. Roketlerde bu itici gücü daha iyi anlamak için şişirilmiş bir balonu, ağzını bağlamadan havaya bırakın, balonun sönerken çıkardığı havanın itme gücüyle zıt yönde hızla hareket ettiğini göreceksiniz. Roketler sıvı veya katı bir yakıtın yanında ateşleyci olarak ayrıca oksijen taşırlar. Yakıt ve oksijen ayrı ayrı tanklarda depolanır ve pompalama sistemiyle belli oranlarda yanma odasına püskürtülür. Yanma odasında oluşturulan küçük bir kıvılcım reaksiyonu başlatır. Ortaya çıkan sıcak gaz büyük bir basınçla dışarı püskürtülerek zıt yönünde etki- tepki prensibine göre hareket sağlanır. Hareketin hızı, roketin kütlesi yanında püskürtülen gazın ilk hızına ve birim zamanda püskürtülen gazın kütlesine bağlıdır. Birim zamanda püskürtülen yakıt kütlesi arttırılarak çok büyük kütleli roketler uzaya fırlatılabilir. Ancak bu durumda, uçuş boyunca fazla yakıt gerekeceğinden, büyük kütleli roketlerin fırlatılmasında yakıt depolarının büyük olması yanında, püskürtülen gazın ilk hızı da arttıralarak daha fazla tepki kuvveti sağlanır. Roketleri jet motorlarından ayıran tek özellik, jet motorlarında oksijen tankı bulunmamasıdır. Jet motorları oksijeni atmosterden alırlar. Ancak bu nedenle jetler sadece oksijeni bol olan alt atmosfer katmanlarında uçabilirler. Roketlerse atmosferin üst katmanlarında hatta boşlukta da etki- tepki prensibine göre hareketlerini sürdürebilirler


    [​IMG]
    1980′li yıllara gelinirken hem ABD’de hem Rusya’da uzay mekiği denen ve tekrar tekrar kullanılabilen uzay araçları geliştirildi. Uzay mekikleri güçlü roketlerle uzaya fırlatılmakta, Dünya etrafındaki yakın uzayda görevlerini yaptıktan sonra tekrar kullanım için tıpkı bir uçak gibi yer yüzüne inebilmektedir. 1980′li yılların başında ABD tarafından uygulamaya sokulan uzay mekikleri birbirine bağlı üç roketle hareket ettirilmekte, yakıt olarak ayrı tanklarda sıvı hidrojen ve sıvı oksijen kullanılmaktadır. Ek olarak yanlarda iki tane katı yakıtlı roket bulunmaktadır. Mekik, Yer çekiminden yavaş yavaş kurtuldukça kademeli olarak işi biten yakıt depolarını okyanus üstlerinde boşluğa bırakmaktadır. Ayrıca, mekiklerin kendi üzerlerinde küçük yapılı manevra roketleri bulunmaktadır. Bugün için roket yakıtları büyük hacimli ve ağır kimyasal yakıtlardır. Özellikle büyük kütlelerin uzaya fırlatılmasında kullanılan roket yakıtları çok fazla olması gerektiğinden, fırlatma işi mühendislik açısından oldukça zorlaşmakta hatta tehlikeli olmaktadır. Bu bakımdan geleceğin roketleri için başka yakıt türleri düşünülmektedir. Yeni düşüncelerden birisi iyon roketi veya elektrik roketidir. Düşünceye göre ağır bir elementin, örneğin; sezyumun atomları tamamen iyonize oluncaya kadar ısıtılacak ve oluşan çok sayıda yüklü parçacık (plâzma) güçlü bir elektrik alanıyla hızlandırılıp uzaya püskürtülecek. Etki tepki prensibine göre de roket zıt yönde hızlanacaktır. Hesaplara göre iyon roketlerinde itme gücü çok fazla olmamakta ancak çok az yakıtla roket uzun süre ivmeli bir hareket yapabileceği için büyük hızlara ulaşacaktır, iyon roketlerinin ilk fırlatma sırasında yakıt kütleleri de az olduğundan bu roketlerle yer çekiminin daha kolay yenileceği sanılmaktadır. Henüz büyük iyon roketleri devreye girmemiş olmasına karşın uzayda küçük iyon roketlerinin denemeleri başarıyla yürütülmektedir.

    Geleceğin roketleri için diğer bir düşünce nükleer güçten yararlanmaktır. Nükleer denizaltılarda olduğu gibi bir reaktörden alınan atomik güçle bir sıvı, örneğin; sıvı hidrojen veya su, sıcak gaz hâline dünüştürülüp uzaya püskürtülerek rokete zıt yönde hız verecektir. Daha da önemli bir düşünce yıldızların merkez bölgelerinde var olan nükleer enerji üretim mekanizmalarının roketlerde uygulanmasıdır. Bilindiği gibi yıldızların merkezlerinde dört hidrojen çekirdeği, yüksek sıcaklık ve basınç altında birleşip bir helyum çekirdeğine dönüşmekte ve çok büyük bir nükleer enerji açığa çıkmaktadır. Gök yüzünde yıldızlar çok uzak oldukları hâlde bu nükleer enerjinin çok büyük olması nedeniyle parlamaktadırlar. Gelecekte roketlerde böyle bir enerji üretim mekanizması çalıştırılabilirse, evrende en bol madde hidrojen olduğuna göre roket yıldızlararası maddeden aldığı hidrojeni enerjiye dönüştürerek yıldızlararası yolculuk yapabilecektir. Bugüne kadar roketler, insanoğlunun Ay’a gitmek gibi eski bir tutkusunu gerçekleştirmede çok önemli bir rol oynamıştır. Güneş sisteminin içinde ve bunun da ötesinde insansız uzay araştırmalarının yapılabilmesini mümkün hâle getirmiş ve uzayla ilgili bilgilerin hızla gelişmesini sağlamıştır. Yarının gelişmiş roketleriyle diğer Güneş sistemlerine ulaşma tutkusu da gerçekleşebilecektir. Bugün kademeli roketlerle gerçekleştirilen başarılı uzay uçuş projeleri, proje adlarıyla (örneğin Apollo projesi) bilinmektedir. Sovyetlerin en başarılı uzay uçuş projeleri sırasıyla; Sputnik, Vostok, Voskhod, Soyuz ve Venera projeleridir, önemli ABD uzay uçuş projeleri ise; Vanguard, Pioneer, Mercury, Apollo, Gemini ve Voyager projeleridir. Ayrıca ilk uluslararası uçuş projesi olan Apollo- Soyuz test projesi 15-24 Temmuz 1975′te gerçekleştirilmiştir. Rusya ve ABD’den sonra gelişmiş Batı Avrupa ülkeleri, Çin, Japonya, Kanada, Hindistan, Brezilya ve Avustralya gibi birçok ülke uzay araştırmalarında önemli adımlar atmıştır. Ancak uzay araştırmaları çok pahalı bir uğraş olduğundan, Rusya ve ABD dışındaki çalışmalar insansız küçük projelerle sınırlı kalmıştır. ABD’deki uzay araştırmalarını Ulusal Havacılık ve Uzay Dairesi- NASA yürütmektedir, ilk 20 yılda NASA sivil ve askerî amaçlar için 90 trilyon dolar harcamıştır, yarım milyondan fazla insan çalıştırmaktadır. Rusya’da bu işi Bilimler Akademisi ve bu kuruma bağlı Kozmik Araştırmalar Enstitüsü yürütmektedir. Uzay araştırmalarında üçüncü güç 1964′te Avrupa Uzay Araştırmaları Organizasyonu- ESRO olarak kurulup 1975′te Avrupa Uzay Ajansı- ESA ya dönüşen Avrupa ortaklığıdır. Bugün ESA; Belçika, Danimarka, Fransa, Almanya, italya, Hollanda, ispanya, isviçre ve ingiltere’den oluşmaktadır



    [​IMG]


    18 Kasım 1989′da COBE, yörüngesine mükemmel bir şekilde oturtuldu. COBE’nin taşıdığı üç araçtan iki tanesi gökyüzünü uzun kızılötesi dalgaboylarında gözlemledi. Araçlar, uzaydan gelen zayıf sinyallerin uzay aracının kendi sıcaklığından etkilenmemesi için sıvı helyumla soğutulmaktaydı. Bu araçlar görevlerini seferin dokuzuncu ayında sıvı helyumun bittiği sırada tamamladılar. Araçlardan biri fonun ortalama sıcaklığını görülmemiş bir hassasiyetle ölçerek 2.735 °K değerini buldu. Diğeri de ilk defa olarak, uzun kızılötesi dalgaboylarında uzayın haritasını çıkardı.
    Üçüncü ölçüm aleti fon radyasyonunun parlaklığındaki sapmaları aramak için tasarlanmıştı. Altı diferansiyel mikrodalga radyometreden oluşan bu düzenek gözlemlerine devam ediyor; çünkü bunların soğutulması gerekmiyor. Bunlarla gökyüzü şimdiye kadar iki kere tarandı ve üçüncü taramaya devam edilmektedir. Radyometreler gökyüzünü 3.5, 5.7 ve 9.5 milimetre olmak üzere üç kısa radyo dalga boyunda gözlemlemektedir.

    Halen, dünyanın çeşitli yerlerinde aynı derecede hassas aletlere sahip ekipler COBE’nin görebileceğinden daha küçük, bir açı dakikası sapmalar bulmak için gözlem yapmaktadır.

    1 Nisan 2011
    #2
soru sor